{ "cells": [ { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import glob " ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\\Accelerometer.csv (15201, 5) Index(['time', 'seconds_elapsed', 'z', 'y', 'x'], dtype='object')\n", "\\AccelerometerUncalibrated.csv (15201, 5) Index(['time', 'seconds_elapsed', 'z', 'y', 'x'], dtype='object')\n", "\\Barometer.csv (145, 4) Index(['time', 'seconds_elapsed', 'relativeAltitude', 'pressure'], dtype='object')\n", "\\Gravity.csv (15201, 5) Index(['time', 'seconds_elapsed', 'z', 'y', 'x'], dtype='object')\n", "\\Gyroscope.csv (15201, 5) Index(['time', 'seconds_elapsed', 'z', 'y', 'x'], dtype='object')\n", "\\GyroscopeUncalibrated.csv (15201, 5) Index(['time', 'seconds_elapsed', 'z', 'y', 'x'], dtype='object')\n", "\\Location.csv (153, 12) Index(['time', 'seconds_elapsed', 'altitude', 'speedAccuracy',\n", " 'bearingAccuracy', 'latitude', 'altitudeAboveMeanSeaLevel', 'bearing',\n", " 'horizontalAccuracy', 'verticalAccuracy', 'longitude', 'speed'],\n", " dtype='object')\n", "\\Magnetometer.csv (15201, 5) Index(['time', 'seconds_elapsed', 'z', 'y', 'x'], dtype='object')\n", "\\MagnetometerUncalibrated.csv (15201, 5) Index(['time', 'seconds_elapsed', 'z', 'y', 'x'], dtype='object')\n", "\\Metadata.csv (1, 8) Index(['version', 'device name', 'recording time', 'platform', 'appVersion',\n", " 'device id', 'sensors', 'sampleRateMs'],\n", " dtype='object')\n", "\\Orientation.csv (15201, 9) Index(['time', 'seconds_elapsed', 'yaw', 'qx', 'qz', 'roll', 'qw', 'qy',\n", " 'pitch'],\n", " dtype='object')\n" ] } ], "source": [ "filepath = r'C:\\Users\\User\\Downloads\\포트홀 주행 데이터\\2023-05-30_05-10-55'\n", "for filename in glob.glob(filepath+'\\*.csv'):\n", " try :\n", " df= pd.read_csv(filename)\n", " print(filename.replace(filepath,''),df.shape,df.columns) \n", " except:\n", " continue\n", " #" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(df.shape,df.columns)" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [], "source": [ "import psycopg2\n", "import time\n", "from datetime import timedelta,datetime\n", "\n", "class DB():\n", " def __init__(self):\n", " self.conn=psycopg2.connect(\n", " host='localhost',\n", " dbname='postgres',\n", " user='postgres',\n", " password='ts4430!@',\n", " port='5432'\n", " ) # db에 접속\n", " self.conn.autocommit=True\n", " \n", " def db_add_report(self,report_id,report_x,report_y) :\n", " cur = self.conn.cursor() # 커서를 생성한다\n", " now=time.localtime()\n", " d=time.strftime('%Y-%m-%d %X', now)\n", " cur.execute(f'''\n", " insert into \"TRAFFICAGENCY\".report (report_id,report_x,report_y,timestamp)\n", " values ('{report_id}','{report_x}','{report_y}','{d}')\n", " ''')\n", " \n", " def db_get_near_point(self,dest_x,dest_y):\n", " cur = self.conn.cursor() # 커서를 생성한다\n", " now=datetime.now() \n", " d_plus=now +timedelta(hours=1)\n", " d_plus=str(\"'\"+d_plus.strftime('%Y-%m-%d %X')+\"'\")\n", " d_minus=now -timedelta(hours=1)\n", " d_minus=str(\"'\"+d_minus.strftime('%Y-%m-%d %X')+\"'\")\n", " cur.execute(f'''\n", " select report_x, report_y\n", " from \"TRAFFICAGENCY\".report \n", " where {dest_y} > report_y - 0.000498 and {dest_y} <= report_y + 0.000498\n", " and {dest_x} > report_x - 0.000498 and {dest_x} <= report_x + 0.000498\n", " and timestamp between {d_minus} and {d_plus};\n", "\n", "\n", " ''')\n", " result=cur.fetchall()\n", " return result\n", " \n", " def db_add_pothole(pothole_id,pothole_location_x,pothole_location_y) :\n", " cur = self.conn.cursor() # 커서를 생성한다\n", " now=time.localtime()\n", " d=time.strftime('%Y-%m-%d %X', now)\n", " cur.execute(f'''\n", " insert into \"TRAFFICAGENCY\".pothole (pothole_id,pothole_location_x,pothole_location_y,timestamp)\n", " values ('{pothole_id}','{pothole_location_x}','{pothole_location_y}','{d}')\n", " ''') \n", " \n", "\n", "\n", "db = DB()\n", "pothole_x = 123.123\n", "pothole_y = 32.123\n", "db.db_add_report(2,pothole_x,pothole_y)\n", "result=db.db_get_near_point(pothole_x,pothole_y)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "123.123\n", "32.123\n" ] } ], "source": [ "if len(result) >3 :\n", " value = 0\n", " for i in range(len(result)):\n", " value += result[i][0]\n", " average_x= (value / len(result))\n", " value2 = 0\n", " for i in range(len(result)):\n", " value2 += result[i][1]\n", " average_y= (value2 / len(result))\n", " db.db_add_pothole(1,average_x,average_y)\n" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "from datetime import timedelta,datetime\n", "now=datetime.now() \n", "d_plus=now +timedelta(hours=1)\n", "d_plus=str(d_plus.strftime('%Y-%m-%d %X'))\n", "d_minus=now -timedelta(hours=1)\n", "d_minus=str(d_minus.strftime('%Y-%m-%d %X'))\n" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'2023-07-17 17:43:29'" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "d_plus" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "time.struct_time(tm_year=2023, tm_mon=7, tm_mday=17, tm_hour=16, tm_min=30, tm_sec=2, tm_wday=0, tm_yday=198, tm_isdst=0)" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "time.localtime() " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "select report_x, report_y \n", "from \"TRAFFICAGENCY\".report \n", "where 32.123 > report_y - 0.000498 and 32.123 <= report_y + 0.000498\n", "and 123.123 > report_x - 0.000498 and 123.123 <= report_x + 0.000498\n", "and timestamp between {d_plus} and {d_minus}\n", "\n", "pothole_x = 123.123\n", "pothole_y = 32.123" ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.4" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }