
File name
Commit message
Commit date
File name
Commit message
Commit date
File name
Commit message
Commit date
File name
Commit message
Commit date
File name
Commit message
Commit date
function sign(x) {
return x < 0 ? -1 : 1;
}
// Calculate the slopes of the tangents (Hermite-type interpolation) based on
// the following paper: Steffen, M. 1990. A Simple Method for Monotonic
// Interpolation in One Dimension. Astronomy and Astrophysics, Vol. 239, NO.
// NOV(II), P. 443, 1990.
function slope3(that, x2, y2) {
var h0 = that._x1 - that._x0,
h1 = x2 - that._x1,
s0 = (that._y1 - that._y0) / (h0 || h1 < 0 && -0),
s1 = (y2 - that._y1) / (h1 || h0 < 0 && -0),
p = (s0 * h1 + s1 * h0) / (h0 + h1);
return (sign(s0) + sign(s1)) * Math.min(Math.abs(s0), Math.abs(s1), 0.5 * Math.abs(p)) || 0;
}
// Calculate a one-sided slope.
function slope2(that, t) {
var h = that._x1 - that._x0;
return h ? (3 * (that._y1 - that._y0) / h - t) / 2 : t;
}
// According to https://en.wikipedia.org/wiki/Cubic_Hermite_spline#Representations
// "you can express cubic Hermite interpolation in terms of cubic Bézier curves
// with respect to the four values p0, p0 + m0 / 3, p1 - m1 / 3, p1".
function point(that, t0, t1) {
var x0 = that._x0,
y0 = that._y0,
x1 = that._x1,
y1 = that._y1,
dx = (x1 - x0) / 3;
that._context.bezierCurveTo(x0 + dx, y0 + dx * t0, x1 - dx, y1 - dx * t1, x1, y1);
}
function MonotoneX(context) {
this._context = context;
}
MonotoneX.prototype = {
areaStart: function() {
this._line = 0;
},
areaEnd: function() {
this._line = NaN;
},
lineStart: function() {
this._x0 = this._x1 =
this._y0 = this._y1 =
this._t0 = NaN;
this._point = 0;
},
lineEnd: function() {
switch (this._point) {
case 2: this._context.lineTo(this._x1, this._y1); break;
case 3: point(this, this._t0, slope2(this, this._t0)); break;
}
if (this._line || (this._line !== 0 && this._point === 1)) this._context.closePath();
this._line = 1 - this._line;
},
point: function(x, y) {
var t1 = NaN;
x = +x, y = +y;
if (x === this._x1 && y === this._y1) return; // Ignore coincident points.
switch (this._point) {
case 0: this._point = 1; this._line ? this._context.lineTo(x, y) : this._context.moveTo(x, y); break;
case 1: this._point = 2; break;
case 2: this._point = 3; point(this, slope2(this, t1 = slope3(this, x, y)), t1); break;
default: point(this, this._t0, t1 = slope3(this, x, y)); break;
}
this._x0 = this._x1, this._x1 = x;
this._y0 = this._y1, this._y1 = y;
this._t0 = t1;
}
}
function MonotoneY(context) {
this._context = new ReflectContext(context);
}
(MonotoneY.prototype = Object.create(MonotoneX.prototype)).point = function(x, y) {
MonotoneX.prototype.point.call(this, y, x);
};
function ReflectContext(context) {
this._context = context;
}
ReflectContext.prototype = {
moveTo: function(x, y) { this._context.moveTo(y, x); },
closePath: function() { this._context.closePath(); },
lineTo: function(x, y) { this._context.lineTo(y, x); },
bezierCurveTo: function(x1, y1, x2, y2, x, y) { this._context.bezierCurveTo(y1, x1, y2, x2, y, x); }
};
export function monotoneX(context) {
return new MonotoneX(context);
}
export function monotoneY(context) {
return new MonotoneY(context);
}