
+++ example.py
... | ... | @@ -0,0 +1,23 @@ |
1 | +import geopandas as gpd | |
2 | +import pandas as pd | |
3 | +import glob | |
4 | +import numpy as np | |
5 | +from choropleth import choropleth_chart | |
6 | + | |
7 | +# 데이터는 행정구역 가나다순으로 넣으세요 | |
8 | +shp = gpd.read_file('map/영천시 행정동.shp', encoding='utf-8') | |
9 | +shp = shp.sort_values('EMD_KOR_NM') | |
10 | +shp = shp.reset_index() | |
11 | +df = pd.read_csv("data/동별종합.csv") | |
12 | + | |
13 | +colorscale = [\ | |
14 | + [1-0,'#E02C4E'], | |
15 | + [1-0.4, '#F0E32E'], | |
16 | + [1-0.7, '#6FEB75'], | |
17 | + [1-1, '#5FB1F5'] | |
18 | +] | |
19 | + | |
20 | +cdf = df.iloc[:,1] | |
21 | +cdf += df.iloc[:,3] | |
22 | +choropleth_chart(shp, cdf, '2022 영천시 1인가구중 중년이상비율', f"1인가구 중년이상", | |
23 | + colorscheme=colorscale[::-1], adaptive_legend_font_size=True)(파일 끝에 줄바꿈 문자 없음) |
--- test.py
... | ... | @@ -1,96 +0,0 @@ |
1 | -import geopandas as gpd | |
2 | -import pandas as pd | |
3 | -import glob | |
4 | -import numpy as np | |
5 | -from choropleth import choropleth_chart | |
6 | - | |
7 | -# 데이터는 행정구역 가나다순으로 넣으세요 | |
8 | -shp = gpd.read_file('map/영천시 행정동.shp', encoding='utf-8') | |
9 | -shp = shp.sort_values('EMD_KOR_NM') | |
10 | -shp = shp.reset_index() | |
11 | -df = pd.read_csv("data/동별종합.csv") | |
12 | - | |
13 | - | |
14 | -colorscale = [\ | |
15 | - [0,'#E02C4E'], | |
16 | - [0.33, '#F0E32E'], | |
17 | - [0.57, '#6FEB75'], | |
18 | - [1, '#5FB199'] | |
19 | - ] | |
20 | - | |
21 | -datas = glob.glob(f'data/stat/*현황.xlsx') | |
22 | -datas = sorted(datas) | |
23 | -total = [None] * 16 | |
24 | -for i, data in enumerate(datas): | |
25 | - data = pd.read_excel(data) | |
26 | - total[i] = data.loc[:, '계'].sum() | |
27 | -print(total) | |
28 | -sum = np.sum(total) | |
29 | -sum = total/sum | |
30 | -print(sum) | |
31 | - | |
32 | -man = [None] * 16 | |
33 | -for i, data in enumerate(datas): | |
34 | - data = pd.read_excel(data) | |
35 | - man[i] = data.loc[:,'남'].sum() | |
36 | - | |
37 | -woman = [None] * 16 | |
38 | -for i, data in enumerate(datas): | |
39 | - data = pd.read_excel(data) | |
40 | - woman[i] = data.loc[:,'여'].sum() | |
41 | - | |
42 | - | |
43 | -# total = pd.DataFrame(total,index=shp['EMD_KOR_NM'].values) | |
44 | -# choropleth_chart(shp,total,' ','읍면동별 1인가구수', show_legend=False, unit="가구" ,colorscheme="OrRd", adaptive_annotation=True) | |
45 | -# choropleth_chart(shp,sum,' ','읍면동별 1인가구수백분율', show_legend=False, unit="%", colorscheme="OrRd", adaptive_annotation=True) | |
46 | -# choropleth_chart(shp,man,' ','읍면동별 1인가구수남자', show_legend=False, unit="가구", colorscheme="OrRd", adaptive_annotation=True) | |
47 | -# choropleth_chart(shp,woman,' ','읍면동별 1인가구수여자', show_legend=False, unit="가구", colorscheme="OrRd", adaptive_annotation=True) | |
48 | -# colorscale = [\ | |
49 | -# [0,'#E07C0E'], | |
50 | -# [0.33, '#F0E32E'], | |
51 | -# [0.57, '#6FEB75'], | |
52 | -# [1, '#5FB1F5'] | |
53 | -# ] | |
54 | - | |
55 | -colorscale = [\ | |
56 | - [1-0,'#E02C4E'], | |
57 | - [1-0.4, '#F0E32E'], | |
58 | - [1-0.7, '#6FEB75'], | |
59 | - [1-1, '#5FB1F5'] | |
60 | -] | |
61 | - | |
62 | -cdf = df.iloc[:,1] | |
63 | -cdf += df.iloc[:,3] | |
64 | -choropleth_chart(shp, cdf, '2022 영천시 1인가구중 중년이상비율', f"1인가구 중년이상", | |
65 | - colorscheme=colorscale[::-1], adaptive_legend_font_size=True) | |
66 | - | |
67 | -# df = pd.read_csv("data/stat/경상북도 영천시_경로당_20221108.csv") | |
68 | -# | |
69 | -# cdf = df['행정동명'].value_counts() | |
70 | -# # | |
71 | -# colorscale = [\ | |
72 | -# [0,'#E02C4E'], | |
73 | -# [0.33, '#F0E32E'], | |
74 | -# [0.57, '#6FEB75'], | |
75 | -# [1, '#5FB199'] | |
76 | -# ] | |
77 | -# # | |
78 | -# choropleth_chart(shp, cdf, '', f"figure2022노인정test", | |
79 | -# colorscheme=colorscale, adaptive_annotation=True) | |
80 | - | |
81 | -# df = pd.read_excel("data/영천시 2021년 bc카드 행정구역 데이터.xlsx") | |
82 | -# df = df.sort_values('가맹점_읍면동명') | |
83 | -# df = df.reset_index() | |
84 | -# col_index = df.columns | |
85 | -# print(col_index) | |
86 | -# for col in col_index: | |
87 | -# cdf = df[col] | |
88 | -# choropleth_chart(shp, cdf, f"2021년 bc카드 {col}", f"figure2021{col}", adaptive_annotation=True) | |
89 | -# | |
90 | -# df = pd.read_excel("data/2022년 bc카드 행정구역 별 데이터.xlsx") | |
91 | -# col_index = df.columns | |
92 | -# print(col_index) | |
93 | -# # cdf = df['행정동명'].value_counts() | |
94 | -# for col in col_index: | |
95 | -# cdf = df[col] | |
96 | -# choropleth_chart(shp, cdf, f"2022년 bc카드 {col}", f"figure2022{col}", adaptive_annotation=True) |
Add a comment
Delete comment
Once you delete this comment, you won't be able to recover it. Are you sure you want to delete this comment?