import geopandas as gpd import pandas as pd import glob import numpy as np from choropleth import choropleth_chart # 데이터는 행정구역 가나다순으로 넣으세요 shp = gpd.read_file('map/영천시 행정동.shp', encoding='utf-8') shp = shp.sort_values('EMD_KOR_NM') shp = shp.reset_index() df = pd.read_csv("data/동별종합.csv") colorscale = [\ [0,'#E02C4E'], [0.33, '#F0E32E'], [0.57, '#6FEB75'], [1, '#5FB199'] ] datas = glob.glob(f'data/stat/*현황.xlsx') datas = sorted(datas) total = [None] * 16 for i, data in enumerate(datas): data = pd.read_excel(data) total[i] = data.loc[:, '계'].sum() print(total) sum = np.sum(total) sum = total/sum print(sum) man = [None] * 16 for i, data in enumerate(datas): data = pd.read_excel(data) man[i] = data.loc[:,'남'].sum() woman = [None] * 16 for i, data in enumerate(datas): data = pd.read_excel(data) woman[i] = data.loc[:,'여'].sum() # total = pd.DataFrame(total,index=shp['EMD_KOR_NM'].values) # choropleth_chart(shp,total,' ','읍면동별 1인가구수', show_legend=False, unit="가구" ,colorscheme="OrRd", adaptive_annotation=True) # choropleth_chart(shp,sum,' ','읍면동별 1인가구수백분율', show_legend=False, unit="%", colorscheme="OrRd", adaptive_annotation=True) # choropleth_chart(shp,man,' ','읍면동별 1인가구수남자', show_legend=False, unit="가구", colorscheme="OrRd", adaptive_annotation=True) # choropleth_chart(shp,woman,' ','읍면동별 1인가구수여자', show_legend=False, unit="가구", colorscheme="OrRd", adaptive_annotation=True) # colorscale = [\ # [0,'#E07C0E'], # [0.33, '#F0E32E'], # [0.57, '#6FEB75'], # [1, '#5FB1F5'] # ] colorscale = [\ [1-0,'#E02C4E'], [1-0.4, '#F0E32E'], [1-0.7, '#6FEB75'], [1-1, '#5FB1F5'] ] cdf = df.iloc[:,1] cdf += df.iloc[:,3] choropleth_chart(shp, cdf, '2022 영천시 1인가구중 중년이상비율', f"1인가구 중년이상", colorscheme=colorscale[::-1], adaptive_legend_font_size=True) # df = pd.read_csv("data/stat/경상북도 영천시_경로당_20221108.csv") # # cdf = df['행정동명'].value_counts() # # # colorscale = [\ # [0,'#E02C4E'], # [0.33, '#F0E32E'], # [0.57, '#6FEB75'], # [1, '#5FB199'] # ] # # # choropleth_chart(shp, cdf, '', f"figure2022노인정test", # colorscheme=colorscale, adaptive_annotation=True) # df = pd.read_excel("data/영천시 2021년 bc카드 행정구역 데이터.xlsx") # df = df.sort_values('가맹점_읍면동명') # df = df.reset_index() # col_index = df.columns # print(col_index) # for col in col_index: # cdf = df[col] # choropleth_chart(shp, cdf, f"2021년 bc카드 {col}", f"figure2021{col}", adaptive_annotation=True) # # df = pd.read_excel("data/2022년 bc카드 행정구역 별 데이터.xlsx") # col_index = df.columns # print(col_index) # # cdf = df['행정동명'].value_counts() # for col in col_index: # cdf = df[col] # choropleth_chart(shp, cdf, f"2022년 bc카드 {col}", f"figure2022{col}", adaptive_annotation=True)