Alex Young 2024-04-15
Merge branch 'main' into ayo-logging-fixes
@6db3f876147c0c9571c8f6d547c593fb3e234428
README.md
--- README.md
+++ README.md
@@ -3,41 +3,49 @@
 
 **Turning Whisper into Real-Time Transcription System**
 
-Demonstration paper, by Dominik Macháček, Raj Dabre, Ondřej Bojar, 2023
+Demonstration paper, by [Dominik Macháček](https://ufal.mff.cuni.cz/dominik-machacek), [Raj Dabre](https://prajdabre.github.io/), [Ondřej Bojar](https://ufal.mff.cuni.cz/ondrej-bojar), 2023
 
-Abstract:    Whisper is one of the recent state-of-the-art multilingual speech recognition and translation models, however, it is not designed for real time transcription. In this paper, we build on top of Whisper and create Whisper-Streaming, an implementation of real-time speech transcription and translation of Whisper-like models. Whisper-Streaming uses local agreement policy with self-adaptive latency to enable streaming transcription. We show that Whisper-Streaming achieves high quality and 3.3 seconds latency on unsegmented long-form speech transcription test set, and we demonstrate its robustness and practical usability as a component in live transcription service at a multilingual conference. 
+Abstract:    Whisper is one of the recent state-of-the-art multilingual speech recognition and translation models, however, it is not designed for real-time transcription. In this paper, we build on top of Whisper and create Whisper-Streaming, an implementation of real-time speech transcription and translation of Whisper-like models. Whisper-Streaming uses local agreement policy with self-adaptive latency to enable streaming transcription. We show that Whisper-Streaming achieves high quality and 3.3 seconds latency on unsegmented long-form speech transcription test set, and we demonstrate its robustness and practical usability as a component in live transcription service at a multilingual conference. 
 
 
-Paper in proceedings: http://www.afnlp.org/conferences/ijcnlp2023/proceedings/main-demo/cdrom/pdf/2023.ijcnlp-demo.3.pdf
-
-Demo video: https://player.vimeo.com/video/840442741
+[Paper PDF](https://aclanthology.org/2023.ijcnlp-demo.3.pdf), [Demo video](https://player.vimeo.com/video/840442741)
 
 [Slides](http://ufallab.ms.mff.cuni.cz/~machacek/pre-prints/AACL23-2.11.2023-Turning-Whisper-oral.pdf) -- 15 minutes oral presentation at IJCNLP-AACL 2023
 
-Please, cite us. [Bibtex citation](http://www.afnlp.org/conferences/ijcnlp2023/proceedings/main-demo/cdrom/bib/2023.ijcnlp-demo.3.bib):
+Please, cite us. [ACL Anthology](https://aclanthology.org/2023.ijcnlp-demo.3/), [Bibtex citation](https://aclanthology.org/2023.ijcnlp-demo.3.bib):
 
 ```
-@InProceedings{machacek-dabre-bojar:2023:ijcnlp,
-  author    = {Macháček, Dominik  and  Dabre, Raj  and  Bojar, Ondřej},
-  title     = {Turning Whisper into Real-Time Transcription System},
-  booktitle      = {System Demonstrations},
-  month          = {November},
-  year           = {2023},
-  address        = {Bali, Indonesia},
-  publisher      = {Asian Federation of Natural Language Processing},
-  pages     = {17--24},
+@inproceedings{machacek-etal-2023-turning,
+    title = "Turning Whisper into Real-Time Transcription System",
+    author = "Mach{\'a}{\v{c}}ek, Dominik  and
+      Dabre, Raj  and
+      Bojar, Ond{\v{r}}ej",
+    editor = "Saha, Sriparna  and
+      Sujaini, Herry",
+    booktitle = "Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics: System Demonstrations",
+    month = nov,
+    year = "2023",
+    address = "Bali, Indonesia",
+    publisher = "Association for Computational Linguistics",
+    url = "https://aclanthology.org/2023.ijcnlp-demo.3",
+    pages = "17--24",
 }
 ```
 
 ## Installation
 
-1) ``pip install librosa`` -- audio processing library
+1) ``pip install librosa soundfile`` -- audio processing library
 
 2) Whisper backend.
 
-Two alternative backends are integrated. The most recommended one is [faster-whisper](https://github.com/guillaumekln/faster-whisper) with GPU support. Follow their instructions for NVIDIA libraries -- we succeeded with CUDNN 8.5.0 and CUDA 11.7. Install with `pip install faster-whisper`.
+ Several alternative backends are integrated. The most recommended one is [faster-whisper](https://github.com/guillaumekln/faster-whisper) with GPU support. Follow their instructions for NVIDIA libraries -- we succeeded with CUDNN 8.5.0 and CUDA 11.7. Install with `pip install faster-whisper`.
 
 Alternative, less restrictive, but slower backend is [whisper-timestamped](https://github.com/linto-ai/whisper-timestamped): `pip install git+https://github.com/linto-ai/whisper-timestamped`
+
+Thirdly, it's also possible to run this software from the [OpenAI Whisper API](https://platform.openai.com/docs/api-reference/audio/createTranscription). This solution is fast and requires no GPU, just a small VM will suffice, but you will need to pay OpenAI for api access. Also note that, since each audio fragment is processed multiple times, the [price](https://openai.com/pricing) will be higher than obvious from the pricing page, so keep an eye on costs while using. Setting a higher chunk-size will reduce costs significantly. 
+Install with: `pip install openai`
+
+For running with the openai-api backend, make sure that your [OpenAI api key](https://platform.openai.com/api-keys) is set in the `OPENAI_API_KEY` environment variable. For example, before running, do: `export OPENAI_API_KEY=sk-xxx` with *sk-xxx* replaced with your api key. 
 
 The backend is loaded only when chosen. The unused one does not have to be installed.
 
@@ -69,7 +77,7 @@
 
 ```
 usage: whisper_online.py [-h] [--min-chunk-size MIN_CHUNK_SIZE] [--model {tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large-v3,large}] [--model_cache_dir MODEL_CACHE_DIR] [--model_dir MODEL_DIR] [--lan LAN] [--task {transcribe,translate}]
-                         [--backend {faster-whisper,whisper_timestamped}] [--vad] [--buffer_trimming {sentence,segment}] [--buffer_trimming_sec BUFFER_TRIMMING_SEC] [--start_at START_AT] [--offline] [--comp_unaware]
+                         [--backend {faster-whisper,whisper_timestamped,openai-api}] [--vad] [--buffer_trimming {sentence,segment}] [--buffer_trimming_sec BUFFER_TRIMMING_SEC] [--start_at START_AT] [--offline] [--comp_unaware]
                          audio_path
 
 positional arguments:
@@ -86,10 +94,10 @@
   --model_dir MODEL_DIR
                         Dir where Whisper model.bin and other files are saved. This option overrides --model and --model_cache_dir parameter.
   --lan LAN, --language LAN
-                        Language code for transcription, e.g. en,de,cs.
+                        Source language code, e.g. en,de,cs, or 'auto' for language detection.
   --task {transcribe,translate}
                         Transcribe or translate.
-  --backend {faster-whisper,whisper_timestamped}
+  --backend {faster-whisper,whisper_timestamped,openai-api}
                         Load only this backend for Whisper processing.
   --vad                 Use VAD = voice activity detection, with the default parameters.
   --buffer_trimming {sentence,segment}
@@ -147,7 +155,7 @@
 
 This pseudocode describes the interface that we suggest for your implementation. You can implement any features that you need for your application.
 
-```
+```python
 from whisper_online import *
 
 src_lan = "en"  # source language
@@ -216,12 +224,20 @@
 re-process confirmed sentence prefixes and skip them, making sure they don't
 overlap, and we limit the processing buffer window. 
 
-Contributions are welcome.
-
 ### Performance evaluation
 
 [See the paper.](http://www.afnlp.org/conferences/ijcnlp2023/proceedings/main-demo/cdrom/pdf/2023.ijcnlp-demo.3.pdf)
 
+### Contributions
+
+Contributions are welcome. We acknowledge especially:
+
+- [The GitHub contributors](https://github.com/ufal/whisper_streaming/graphs/contributors) for their pull requests with new features and bugfixes.
+- [The translation of this repo into Chinese.](https://github.com/Gloridust/whisper_streaming_CN)
+- [Ondřej Plátek](https://opla.cz/) for the paper pre-review.
+- [Peter Polák](https://ufal.mff.cuni.cz/peter-polak) for the original idea.
+- The UEDIN team of the [ELITR project](https://elitr.eu) for the original line_packet.py.
+
 
 ## Contact
 
whisper_online.py
--- whisper_online.py
+++ whisper_online.py
@@ -7,10 +7,13 @@
 import logging
 
 
+import io
+import soundfile as sf
+import math
 
 @lru_cache
 def load_audio(fname):
-    a, _ = librosa.load(fname, sr=16000)
+    a, _ = librosa.load(fname, sr=16000, dtype=np.float32)
     return a
 
 def load_audio_chunk(fname, beg, end):
@@ -31,7 +34,10 @@
         self.logfile = logfile
 
         self.transcribe_kargs = {}
-        self.original_language = lan 
+        if lan == "auto":
+            self.original_language = None
+        else:
+            self.original_language = lan
 
         self.model = self.load_model(modelsize, cache_dir, model_dir)
 
@@ -55,6 +61,7 @@
 
     def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
         import whisper
+        import whisper_timestamped
         from whisper_timestamped import transcribe_timestamped
         self.transcribe_timestamped = transcribe_timestamped
         if model_dir is not None:
@@ -119,8 +126,11 @@
         return model
 
     def transcribe(self, audio, init_prompt=""):
+
         # tested: beam_size=5 is faster and better than 1 (on one 200 second document from En ESIC, min chunk 0.01)
         segments, info = self.model.transcribe(audio, language=self.original_language, initial_prompt=init_prompt, beam_size=5, word_timestamps=True, condition_on_previous_text=True, **self.transcribe_kargs)
+        #print(info)  # info contains language detection result
+
         return list(segments)
 
     def ts_words(self, segments):
@@ -141,6 +151,93 @@
 
     def set_translate_task(self):
         self.transcribe_kargs["task"] = "translate"
+
+
+class OpenaiApiASR(ASRBase):
+    """Uses OpenAI's Whisper API for audio transcription."""
+
+    def __init__(self, lan=None, temperature=0, logfile=sys.stderr):
+        self.logfile = logfile
+
+        self.modelname = "whisper-1"  
+        self.original_language = None if lan == "auto" else lan # ISO-639-1 language code
+        self.response_format = "verbose_json" 
+        self.temperature = temperature
+
+        self.load_model()
+
+        self.use_vad_opt = False
+
+        # reset the task in set_translate_task
+        self.task = "transcribe"
+
+    def load_model(self, *args, **kwargs):
+        from openai import OpenAI
+        self.client = OpenAI()
+
+        self.transcribed_seconds = 0  # for logging how many seconds were processed by API, to know the cost
+        
+
+    def ts_words(self, segments):
+        no_speech_segments = []
+        if self.use_vad_opt:
+            for segment in segments.segments:
+                # TODO: threshold can be set from outside
+                if segment["no_speech_prob"] > 0.8:
+                    no_speech_segments.append((segment.get("start"), segment.get("end")))
+
+        o = []
+        for word in segments.words:
+            start = word.get("start")
+            end = word.get("end")
+            if any(s[0] <= start <= s[1] for s in no_speech_segments):
+                # print("Skipping word", word.get("word"), "because it's in a no-speech segment")
+                continue
+            o.append((start, end, word.get("word")))
+        return o
+
+
+    def segments_end_ts(self, res):
+        return [s["end"] for s in res.words]
+
+    def transcribe(self, audio_data, prompt=None, *args, **kwargs):
+        # Write the audio data to a buffer
+        buffer = io.BytesIO()
+        buffer.name = "temp.wav"
+        sf.write(buffer, audio_data, samplerate=16000, format='WAV', subtype='PCM_16')
+        buffer.seek(0)  # Reset buffer's position to the beginning
+
+        self.transcribed_seconds += math.ceil(len(audio_data)/16000)  # it rounds up to the whole seconds
+
+        params = {
+            "model": self.modelname,
+            "file": buffer,
+            "response_format": self.response_format,
+            "temperature": self.temperature,
+            "timestamp_granularities": ["word", "segment"]
+        }
+        if self.task != "translate" and self.original_language:
+            params["language"] = self.original_language
+        if prompt:
+            params["prompt"] = prompt
+
+        if self.task == "translate":
+            proc = self.client.audio.translations
+        else:
+            proc = self.client.audio.transcriptions
+
+        # Process transcription/translation
+        transcript = proc.create(**params)
+        logging.debug(f"OpenAI API processed accumulated {self.transcribed_seconds} seconds")
+
+        return transcript
+
+    def use_vad(self):
+        self.use_vad_opt = True
+
+    def set_translate_task(self):
+        self.task = "translate"
+
 
 
 
@@ -237,9 +334,6 @@
 
         self.transcript_buffer = HypothesisBuffer(logfile=self.logfile)
         self.commited = []
-        self.last_chunked_at = 0
-
-        self.silence_iters = 0
 
     def insert_audio_chunk(self, audio):
         self.audio_buffer = np.append(self.audio_buffer, audio)
@@ -249,7 +343,7 @@
         "context" is the commited text that is inside the audio buffer. It is transcribed again and skipped. It is returned only for debugging and logging reasons.
         """
         k = max(0,len(self.commited)-1)
-        while k > 0 and self.commited[k-1][1] > self.last_chunked_at:
+        while k > 0 and self.commited[k-1][1] > self.buffer_time_offset:
             k -= 1
 
         p = self.commited[:k]
@@ -362,7 +456,6 @@
         cut_seconds = time - self.buffer_time_offset
         self.audio_buffer = self.audio_buffer[int(cut_seconds*self.SAMPLING_RATE):]
         self.buffer_time_offset = time
-        self.last_chunked_at = time
 
     def words_to_sentences(self, words):
         """Uses self.tokenizer for sentence segmentation of words.
@@ -456,12 +549,41 @@
     parser.add_argument('--model', type=str, default='large-v2', choices="tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large-v3,large".split(","),help="Name size of the Whisper model to use (default: large-v2). The model is automatically downloaded from the model hub if not present in model cache dir.")
     parser.add_argument('--model_cache_dir', type=str, default=None, help="Overriding the default model cache dir where models downloaded from the hub are saved")
     parser.add_argument('--model_dir', type=str, default=None, help="Dir where Whisper model.bin and other files are saved. This option overrides --model and --model_cache_dir parameter.")
-    parser.add_argument('--lan', '--language', type=str, default='en', help="Language code for transcription, e.g. en,de,cs.")
+    parser.add_argument('--lan', '--language', type=str, default='auto', help="Source language code, e.g. en,de,cs, or 'auto' for language detection.")
     parser.add_argument('--task', type=str, default='transcribe', choices=["transcribe","translate"],help="Transcribe or translate.")
-    parser.add_argument('--backend', type=str, default="faster-whisper", choices=["faster-whisper", "whisper_timestamped"],help='Load only this backend for Whisper processing.')
+    parser.add_argument('--backend', type=str, default="faster-whisper", choices=["faster-whisper", "whisper_timestamped", "openai-api"],help='Load only this backend for Whisper processing.')
     parser.add_argument('--vad', action="store_true", default=False, help='Use VAD = voice activity detection, with the default parameters.')
     parser.add_argument('--buffer_trimming', type=str, default="segment", choices=["sentence", "segment"],help='Buffer trimming strategy -- trim completed sentences marked with punctuation mark and detected by sentence segmenter, or the completed segments returned by Whisper. Sentence segmenter must be installed for "sentence" option.')
     parser.add_argument('--buffer_trimming_sec', type=float, default=15, help='Buffer trimming length threshold in seconds. If buffer length is longer, trimming sentence/segment is triggered.')
+
+def asr_factory(args, logfile=sys.stderr):
+    """
+    Creates and configures an ASR instance based on the specified backend and arguments.
+    """
+    backend = args.backend
+    if backend == "openai-api":
+        logging.debug("Using OpenAI API.")
+        asr = OpenaiApiASR(lan=args.lan)
+    else:
+        if backend == "faster-whisper":
+            asr_cls = FasterWhisperASR
+        else:
+            asr_cls = WhisperTimestampedASR
+
+        # Only for FasterWhisperASR and WhisperTimestampedASR
+        size = args.model
+        t = time.time()
+        logging.debug(f"Loading Whisper {size} model for {args.lan}...")
+        asr = asr_cls(modelsize=size, lan=args.lan, cache_dir=args.model_cache_dir, model_dir=args.model_dir)
+        e = time.time()
+        logging.debug(f"done. It took {round(e-t,2)} seconds.")
+
+    # Apply common configurations
+    if getattr(args, 'vad', False):  # Checks if VAD argument is present and True
+        logging.info("Setting VAD filter")
+        asr.use_vad()
+
+    return asr
 
 ## main:
 
@@ -490,18 +612,8 @@
     duration = len(load_audio(audio_path))/SAMPLING_RATE
     logging.info("Audio duration is: %2.2f seconds" % duration)
 
-    size = args.model
+    asr = asr_factory(args, logfile=logfile)
     language = args.lan
-
-    t = time.time()
-    logging.info(f"Loading Whisper {size} model for {language}...")
-
-    if args.backend == "faster-whisper":
-        asr_cls = FasterWhisperASR
-    else:
-        asr_cls = WhisperTimestampedASR
-
-    asr = asr_cls(modelsize=size, lan=language, cache_dir=args.model_cache_dir, model_dir=args.model_dir)
 
     if args.task == "translate":
         asr.set_translate_task()
@@ -509,15 +621,6 @@
     else:
         tgt_language = language  # Whisper transcribes in this language
 
-
-    e = time.time()
-    logging.info(f"done. It took {round(e-t,2)} seconds.")
-
-    if args.vad:
-        logging.info("setting VAD filter")
-        asr.use_vad()
-
-    
     min_chunk = args.min_chunk_size
     if args.buffer_trimming == "sentence":
         tokenizer = create_tokenizer(tgt_language)
@@ -548,7 +651,8 @@
             print("%1.4f %1.0f %1.0f %s" % (now*1000, o[0]*1000,o[1]*1000,o[2]),file=logfile,flush=True)
             print("%1.4f %1.0f %1.0f %s" % (now*1000, o[0]*1000,o[1]*1000,o[2]),flush=True)
         else:
-            print("here?", o,file=logfile,flush=True)
+            # No text, so no output
+            pass
 
     if args.offline: ## offline mode processing (for testing/debugging)
         a = load_audio(audio_path)
whisper_online_server.py
--- whisper_online_server.py
+++ whisper_online_server.py
@@ -5,6 +5,7 @@
 import argparse
 import os
 import logging
+import numpy as np
 
 parser = argparse.ArgumentParser()
 
@@ -33,34 +34,13 @@
 size = args.model
 language = args.lan
 
-t = time.time()
-logging.debug(f"Loading Whisper {size} model for {language}...")
-
-if args.backend == "faster-whisper":
-    from faster_whisper import WhisperModel
-    asr_cls = FasterWhisperASR
-    logging.getLogger("faster_whisper").setLevel(logging.WARNING)
-else:
-    import whisper
-    import whisper_timestamped
-#    from whisper_timestamped_model import WhisperTimestampedASR
-    asr_cls = WhisperTimestampedASR
-
-asr = asr_cls(modelsize=size, lan=language, cache_dir=args.model_cache_dir, model_dir=args.model_dir)
+asr = asr_factory(args)
 
 if args.task == "translate":
     asr.set_translate_task()
     tgt_language = "en"
 else:
     tgt_language = language
-
-e = time.time()
-logging.debug(f"done. It took {round(e-t,2)} seconds.")
-
-if args.vad:
-    logging.debug("setting VAD filter")
-    asr.use_vad()
-
 
 min_chunk = args.min_chunk_size
 
@@ -141,7 +121,7 @@
             if not raw_bytes:
                 break
             sf = soundfile.SoundFile(io.BytesIO(raw_bytes), channels=1,endian="LITTLE",samplerate=SAMPLING_RATE, subtype="PCM_16",format="RAW")
-            audio, _ = librosa.load(sf,sr=SAMPLING_RATE)
+            audio, _ = librosa.load(sf,sr=SAMPLING_RATE,dtype=np.float32)
             out.append(audio)
         if not out:
             return None
Add a comment
List