
File name
Commit message
Commit date
File name
Commit message
Commit date
File name
Commit message
Commit date
import numpy as np
import cv2
from skimage.io import imread
from skimage.transform import resize
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split, GridSearchCV
def darkchannel(file1):
img = imread(file1)
img = resize(img, (512,512))
b,g,r = cv2.split(img)
jx = cv2.min(cv2.min(r,g),b)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(64,64))
dark=cv2.erode(jx,kernel)
size = img.shape[:2]
k = int(0.001*np.prod(size))
idx = np.argpartition(-dark.ravel(),k)[:k]
x, y = np.hsplit(np.column_stack(np.unravel_index(idx, size)), 2)
A = np.array([img[x,y,0].max(), img[x,y,1].max(), img[x,y,2].max()])
zz = np.column_stack(np.unravel_index(idx, dark.shape))
x, y = np.hsplit(zz,2)
norm_img = img / A
b2,g2,r2= cv2.split(norm_img)
jx2 = cv2.min(cv2.min(r2,g2),b2)
kernel2 = cv2.getStructuringElement(cv2.MORPH_RECT,(64,64))
dark2=cv2.erode(jx2,kernel2)
alpha_map=(1-0.95*dark2)*255
alpha_map = np.array(alpha_map)
result=np.average(alpha_map)
return alpha_map,result
def sobel(img):
img_color = imread(img)
#img_color= resize(img_color,(512,512))
img_gray = cv2.cvtColor(img_color, cv2.COLOR_BGR2GRAY)
img_sobel_x = cv2.Sobel(img_gray, cv2.CV_64F, 1, 0, ksize=3)
img_sobel_x = cv2.convertScaleAbs(img_sobel_x)
img_sobel_y = cv2.Sobel(img_gray, cv2.CV_64F, 0, 1, ksize=3)
img_sobel_y = cv2.convertScaleAbs(img_sobel_y)
img_sobel = cv2.addWeighted(img_sobel_x, 1, img_sobel_y, 1, 0)
img_sobel=np.array(img_sobel)
result=np.var(img_sobel)
return result
def mkdf(average,target,li_edge):
df=pd.DataFrame({"average":average,"target":target, "edge":li_edge})
Y_data = df['target']
X_data = df.drop('target', axis = 1)
X_train, X_test, Y_train, Y_test = train_test_split(X_data, Y_data, test_size=0.3)
return X_train, X_test, Y_train, Y_test