• Y
  • List All
  • Feedback
    • This Project
    • All Projects
Profile Account settings Log out
  • Favorite
  • Project
  • All
Loading...
  • Log in
  • Sign up
yjyoon / 경상북도CCTV분석 star
  • Project homeH
  • CodeC
  • IssueI
  • Pull requestP
  • Review R
  • MilestoneM
  • BoardB
  • Files
  • Commit
  • Branches
경상북도CCTV분석survillence_area.py
Download as .zip file
File name
Commit message
Commit date
tools
api remove
2024-08-01
CCTV_감시구역.py
Hello Yona
2024-08-01
CCTV_감시구역_격자.gpkg
Hello Yona
2024-08-01
CCTV설치점수산출.py
Hello Yona
2024-08-01
cctv_ratio.py
Hello Yona
2024-08-01
crimin_area_cal.py
Hello Yona
2024-08-01
survillence_area.py
Hello Yona
2024-08-01
건축물대장.py
Hello Yona
2024-08-01
건축물대장2grid.py
Hello Yona
2024-08-01
건축물대장_geocoding.py
Hello Yona
2024-08-01
범죄주의구역_점수산출.py
Hello Yona
2024-08-01
상가2gird.py
Hello Yona
2024-08-01
생활안전지도.py
Hello Yona
2024-08-01
생활안전지도_범죄주의구역_영역계산.py
Hello Yona
2024-08-01
아파트구획_추출.py
Hello Yona
2024-08-01
juni 2024-08-01 7d6a8ef Hello Yona UNIX
Raw Open in browser Change history
from pyogrio import write_dataframe, read_dataframe import pandas as pd import geopandas as gpd import numpy as np import glob SIG_CODE = [ ["경산", "47290"], ["경주", "47130"], ["구미", "47190"], ["김천", "47150"], ["안동", "47170"], ["영주", "47210"], ["영천", "47230"], ["예천", "47900"], ["칠곡", "47850"], ["포항_남구", "47111"], ["포항_북구", "47113"] ] # origin = read_dataframe("DATA/refined/geopackage/100x100/100m격자총인구.gpkg") # print(origin.columns) boarder = read_dataframe("DATA/refined/geopackage/음영구역_격자/100m격자총인구.gpkg격자_경계.gpkg") print(boarder.columns) negative = read_dataframe("DATA/refined/geopackage/음영구역_격자/100m격자_음영구역_CPTED.gpkg") print(negative.columns) print("dataframe_loaded!") for SIG in SIG_CODE: boarder_SIG = boarder[boarder["EMD_CD"].str.contains(SIG[1])] negative_SIG = negative[negative["EMD_CD"].str.contains(SIG[1])] # origin_SIG = origin[origin["EMD_CD"].str.contains(SIG[1])] boarder_SIG = boarder_SIG.dissolve(by="GID") negative_SIG = negative_SIG.dissolve(by="GID") boarder_SIG["boarder_area"] = boarder_SIG["geometry"].area negative_SIG["negative_area"] = negative_SIG["geometry"].area boarder_SIG = boarder_SIG.rename(columns={"geometry" : "boarder_geometry"}) negative_SIG = negative_SIG.rename(columns={"geometry": "negative_geometry"}) merged = pd.merge(boarder_SIG, negative_SIG, on="GID").reset_index() merged["area_ratio"] = merged["negative_area"] / merged["boarder_area"] merged = merged.set_geometry("negative_geometry") merged = merged.drop(columns="boarder_geometry") write_dataframe(merged, f"DATA/refined/geopackage/100x100음영구역_비율/음영구역비율_{SIG[0]}.gpkg")

          
        
    
    
Copyright Yona authors & © NAVER Corp. & NAVER LABS Supported by NAVER CLOUD PLATFORM

or
Sign in with github login with Google Sign in with Google
Reset password | Sign up