
File name
Commit message
Commit date
File name
Commit message
Commit date
import torch
from torch import nn
from torch.nn import functional as F
def conv3x3(in_ch, out_ch, stride=1, padding=1, groups=1, dilation=1):
return nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=stride, padding=padding, groups=groups, dilation=dilation)
def conv1x1(in_ch, out_ch, stride=1):
return nn.Conv2d(in_ch, out_ch, kernel_size=1, stride=stride)
class ResNetBlock(nn.Module):
def __init__(self, blocks=3, layers=1, input_ch=3, out_ch=32, kernel_size=None, stride=1, padding=1, groups=1,
dilation=1):
"""
:type kernel_size: iterator or int
"""
super(ResNetBlock, self).__init__()
if kernel_size is None:
kernel_size = [3, 3]
self.conv1 = nn.Conv2d(
input_ch, out_ch,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
dilation=dilation
)
self.conv2 = nn.Sequential(
nn.Conv2d(
out_ch, out_ch,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
dilation=dilation
),
nn.ReLU()
)
self.conv_hidden = nn.ModuleList()
for block in range(blocks):
for layer in range(layers):
self.conv_hidden.append(
self.conv2
)
self.relu = nn.ReLU
self.blocks = blocks
self.layers = layers
def forward(self, x):
shortcut = x
x = self.conv1(shortcut)
for i, hidden_layer in enumerate(self.conv_hidden):
x = hidden_layer(x)
if (i % self.layers == 0) & (i != 0):
x = self.relu(x)
x += shortcut
return x
class ConvLSTM(nn.Module):
def __init__(self, ch, kernel_size=3):
super(ConvLSTM, self).__init__()
self.padding = (kernel_size-1)/2
self.conv_i = nn.Conv2d(in_channels=ch, out_channels=ch, kernel_size=kernel_size, stride=1, padding=1,
bias=False)
self.conv_f = nn.Conv2d(in_channels=ch, out_channels=ch, kernel_size=kernel_size, stride=1, padding=1,
bias=False)
self.conv_c = nn.Conv2d(in_channels=ch, out_channels=ch, kernel_size=kernel_size, stride=1, padding=1,
bias=False)
self.conv_o = nn.Conv2d(in_channels=ch, out_channels=ch, kernel_size=kernel_size, stride=1, padding=1,
bias=False)
self.conv_attention_map = nn.Conv2d(in_channels=ch, out_channels=1, kernel_size=kernel_size, stride=1,
padding=1, bias=False)
self.ch = ch
def init_hidden(self, batch_size, image_size, init=0.5):
height, width = image_size
return torch.ones(batch_size, self.ch, height, width).to(self.conv_i.weight.device) * init
def forward(self, input_tensor, input_cell_state=None):
if input_cell_state is None:
batch_size, _, height, width = input_tensor.size()
input_cell_state = self.init_hidden(batch_size, (height, width))
conv_i = self.conv_i(input_tensor)
sigmoid_i = torch.sigmoid(conv_i)
conv_f = self.conv_f(input_tensor)
sigmoid_f = torch.sigmoid(conv_f)
cell_state = sigmoid_f * input_cell_state + sigmoid_i * torch.tanh(self.conv_c(input_tensor))
conv_o = self.conv_o(input_tensor)
sigmoid_o = torch.sigmoid(conv_o)
lstm_feats = sigmoid_o * torch.tanh(cell_state)
attention_map = self.conv_attention_map(lstm_feats)
attention_map = torch.sigmoid(attention_map)
return attention_map, cell_state, lstm_feats
class GeneratorBlock(nn.Module):
def __init__(self, blocks=3, layers=1, input_ch=3, out_ch=32, kernel_size=None, stride=1, padding=1, groups=1,
dilation=1):
"""
:type kernel_size: iterator or int
"""
super(GeneratorBlock, self).__init__()
if kernel_size is None:
kernel_size = [3, 3]
self.blocks = blocks
self.layers = layers
self.input_ch = input_ch
self.out_ch = out_ch
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.groups = groups
self.dilation = dilation
self.sigmoid = nn.Sigmoid()
self.resnet = nn.Sequential(
ResNetBlock(
blocks=self.blocks,
layers=self.layers,
input_ch=self.input_ch,
out_ch=self.out_ch,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding,
groups=self.groups,
dilation=self.dilation
)
)
self.LSTM = nn.Sequential(
ConvLSTM(
ch=out_ch, kernel_size=kernel_size,
)
)
def forward(self, original_image, prev_cell_state=None):
x = self.resnet(original_image)
attention_map, cell_state, lstm_feats = self.LSTM(x, prev_cell_state)
x = attention_map * original_image
return x, attention_map, cell_state, lstm_feats
class Generator(nn.Module):
def __init__(self, repetition, blocks=3, layers=1, input_ch=3, out_ch=32, kernel_size=None, stride=1, padding=1,
groups=1, dilation=1):
"""
:type kernel_size: iterator or int
"""
super(Generator, self).__init__()
if kernel_size is None:
kernel_size = [3, 3]
self.blocks = blocks
self.layers = layers
self.input_ch = input_ch
self.out_ch = out_ch
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.groups = groups
self.dilation = dilation
self.repetition = repetition
self.generator_block = nn.Sequential(
GeneratorBlock(blocks=blocks,
layers=layers,
input_ch=input_ch,
out_ch=out_ch,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
dilation=dilation)
)
self.generator_blocks = nn.ModuleList()
for repetition in range(repetition):
self.conv_hidden.append(
self.generator_block
)
def forward(self, x):
cell_state = None
attention_map = None
for generator_block in self.generator_blocks:
x, attention_map, cell_state, lstm_feats = generator_block(x, cell_state)
return x, attention_map
# need fixing
class AttentiveRNNLoss(nn.Module):
def __init__(self):
super(AttentiveRNNLoss, self).__init__()
def forward(self, input_tensor, label_tensor):
# Initialize attentive rnn model
attentive_rnn = Generator
inference_ret = attentive_rnn(input_tensor)
loss = 0.0
n = len(inference_ret['attention_map_list'])
for index, attention_map in enumerate(inference_ret['attention_map_list']):
mse_loss = (0.8 ** (n - index + 1)) * nn.MSELoss()(attention_map, label_tensor)
loss += mse_loss
return loss, inference_ret['final_attention_map']
# Need work
class DiscriminativeNet(nn.Module):
def __init__(self, W, H):
super(DiscriminativeNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=8, kernel_size=5, stride=1, padding=2)
self.conv2 = nn.Conv2d(in_channels=8, out_channels=16, kernel_size=5, stride=1, padding=2)
self.conv3 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=1, padding=2)
self.conv4 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2)
self.conv5 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=5, stride=1, padding=2)
self.conv6 = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=5, stride=1, padding=2)
self.conv_map = nn.Conv2d(in_channels=128, out_channels=1, kernel_size=5, stride=1, padding=2, bias=False)
self.conv7 = nn.Conv2d(in_channels=128, out_channels=64, kernel_size=5, stride=4, padding=2)
self.conv8 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=5, stride=4, padding=2)
self.conv9 = nn.Conv2d(in_channels=64, out_channels=32, kernel_size=5, stride=4, padding=2)
self.fc1 = nn.Linear(32 * W * H,
1024) # You need to adjust the input dimension here depending on your input size
self.fc2 = nn.Linear(1024, 1)
def forward(self, x):
x1 = F.leaky_relu(self.conv1(x))
x2 = F.leaky_relu(self.conv2(x1))
x3 = F.leaky_relu(self.conv3(x2))
x4 = F.leaky_relu(self.conv4(x3))
x5 = F.leaky_relu(self.conv5(x4))
x6 = F.leaky_relu(self.conv6(x5))
attention_map = self.conv_map(x6)
x7 = F.leaky_relu(self.conv7(attention_map * x6))
x8 = F.leaky_relu(self.conv8(x7))
x9 = F.leaky_relu(self.conv9(x8))
x9 = x9.view(x9.size(0), -1) # flatten the tensor
fc1 = self.fc1(x9)
fc2 = self.fc2(fc1)
fc_out = torch.sigmoid(fc2)
# Ensure fc_out is not exactly 0 or 1 for stability of log operation in loss
fc_out = torch.clamp(fc_out, min=1e-7, max=1 - 1e-7)
return fc_out, attention_map, fc2