• Y
  • List All
  • Feedback
    • This Project
    • All Projects
Profile Account settings Log out
  • Favorite
  • Project
  • All
Loading...
  • Log in
  • Sign up
yjyoon / Raindrop_Detection star
  • Project homeH
  • CodeC
  • IssueI
  • Pull requestP
  • Review R
  • MilestoneM
  • BoardB
  • Files
  • Commit
  • Branches
Raindrop_Detectiontrain.py
Download as .zip file
File name
Commit message
Commit date
data
updating loss function
2023-06-23
model
Added comment
2023-06-30
tools
Added comment
2023-06-30
README.md
readme update
2023-06-21
batchmix.png
theorizing train code for GAN
2023-06-22
datasetmananger.py
theorizing about dataset management
2023-06-23
main.py
Hello YONA
2023-06-21
train.py
Added comment
2023-06-30
juni 2023-06-30 fa53112 Added comment UNIX
Raw Open in browser Change history
import sys import os import torch import numpy as np import pandas as pd import plotly.express as px from torchvision.utils import save_image from model import Autoencoder from model import Generator from model import Discriminator from model import AttentiveRNN from tools.argparser import get_param from tools.logger import Logger from tools.dataloader import Dataset # this function is from https://github.com/eriklindernoren/PyTorch-GAN/blob/master/implementations/dualgan/models.py def weights_init_normal(m): classname = m.__class__.__name__ if classname.find("Conv") != -1: torch.nn.init.normal_(m.weight.data, 0.0, 0.02) elif classname.find("BatchNorm2d") != -1: torch.nn.init.normal_(m.weight.data, 1.0, 0.02) torch.nn.init.constant_(m.bias.data, 0.0) param = get_param() logger = Logger() cuda = True if torch.cuda.is_available() else False generator = Generator() # get network values and stuff discriminator = Discriminator() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') generator = Generator().to(device) discriminator = Discriminator().to(device) if load is not False: generator.load_state_dict(torch.load("example_path")) discriminator.load_state_dict(torch.load("example_path")) else: generator.apply(weights_init_normal) discriminator.apply(weights_init_normal) dataloader = Dataloader() # declare generator loss optimizer_G = torch.optim.Adam(generator.parameters(), lr=lr) optimizer_D = torch.optim.Adam(generator.parameters(), lr=lr) for epoch_num, epoch in enumerate(range(epochs)): for i, (imgs, _) in enumerate(dataloader): logger.print_training_log(epoch_num, epochs, i, len(enumerate(dataloader))) img_batch = data[0].to(device) clean_img = img_batch["clean_image"] rainy_img = img_batch["rainy_image"] optimizer_G.zero_grad() generator_outputs = generator(clean_img) generator_result = generator_outputs["x"] generator_attention_map = generator_outputs["attention_map_list"] generator_loss = generator.loss(clean_img, rainy_img) generator_loss.backward() optimizer_G.step() optimizer_D.zero_grad() real_clean_prediction = discriminator(clean_img) discriminator_loss = discriminator.loss(real_clean_prediction, generator_result, generator_attention_map) discriminator_loss.backward() optimizer_D.step() torch.save(generator.attentionRNN.state_dict(), "attentionRNN_model_path") ## RNN 따로 돌리고 CPU로 메모리 옳기고 ## Autoencoder 따로 돌리고 메모리 옳기고 ## 안되는가 ## 대충 열심히 GAN 구성하는 코드 ## 대충 그래서 weight export해서 inference용과 training용으로 나누는 코드 ## 대충 그래서 inference용은 attention map까지 하는 녀석과 deraining까지 하는 녀석 두개가 나오는 코드 ## 학습용은 그래서 풀 weight 나옴 ## GAN은 학습 시키면 Nash equilibrium ... 나오게 할 수 있으려나? ## 대충 학습은 어떻게 돌려야 되지 하는 코드 ## generator에서 튀어 나온 애들을 따로 저장해야 하는건가

          
        
    
    
Copyright Yona authors & © NAVER Corp. & NAVER LABS Supported by NAVER CLOUD PLATFORM

or
Sign in with github login with Google Sign in with Google
Reset password | Sign up