• Y
  • List All
  • Feedback
    • This Project
    • All Projects
Profile Account settings Log out
  • Favorite
  • Project
  • All
Loading...
  • Log in
  • Sign up
yjyoon / whisper_server_speaches star
  • Project homeH
  • CodeC
  • IssueI
  • Pull requestP
  • Review R
  • MilestoneM
  • BoardB
  • Files
  • Commit
  • Branches
whisper_server_speachessrcspeachesroutersspeech.py
Download as .zip file
File name
Commit message
Commit date
.github/workflows
feat: switch to ghcr.io
01-10
configuration
feat: add instrumentation
2024-12-17
docs
rename to `speaches`
01-12
examples
rename to `speaches`
01-12
scripts
chore: misc changes
2024-10-03
src/speaches
rename to `speaches`
01-12
tests
rename to `speaches`
01-12
.dockerignore
chore: update .dockerignore
2024-11-01
.envrc
init
2024-05-20
.gitattributes
chore(deps): update pre-commit hook astral-sh/ruff-pre-commit to v0.7.2
2024-11-02
.gitignore
chore: update .gitignore
2024-07-03
.pre-commit-config.yaml
docs: usage pages (and more)
01-12
Dockerfile
rename to `speaches`
01-12
LICENSE
init
2024-05-20
README.md
rename to `speaches`
01-12
Taskfile.yaml
rename to `speaches`
01-12
audio.wav
chore: update volume names and mount points
01-10
compose.cpu.yaml
rename to `speaches`
01-12
compose.cuda-cdi.yaml
rename to `speaches`
01-12
compose.cuda.yaml
rename to `speaches`
01-12
compose.observability.yaml
rename to `speaches`
01-12
compose.yaml
rename to `speaches`
01-12
flake.lock
deps: update flake
2024-11-01
flake.nix
chore(deps): add loki and tempo package to flake
2024-12-17
mkdocs.yml
rename to `speaches`
01-12
pyproject.toml
rename to `speaches`
01-12
renovate.json
feat: renovate handle pre-commit
2024-11-01
uv.lock
rename to `speaches`
01-12
File name
Commit message
Commit date
routers
rename to `speaches`
01-12
__init__.py
rename to `speaches`
01-12
api_models.py
rename to `speaches`
01-12
asr.py
rename to `speaches`
01-12
audio.py
rename to `speaches`
01-12
config.py
rename to `speaches`
01-12
dependencies.py
rename to `speaches`
01-12
gradio_app.py
rename to `speaches`
01-12
hf_utils.py
rename to `speaches`
01-12
logger.py
rename to `speaches`
01-12
main.py
rename to `speaches`
01-12
model_manager.py
rename to `speaches`
01-12
text_utils.py
rename to `speaches`
01-12
text_utils_test.py
rename to `speaches`
01-12
transcriber.py
rename to `speaches`
01-12
File name
Commit message
Commit date
__init__.py
rename to `speaches`
01-12
misc.py
rename to `speaches`
01-12
models.py
rename to `speaches`
01-12
speech.py
rename to `speaches`
01-12
stt.py
rename to `speaches`
01-12
Fedir Zadniprovskyi 01-12 43cc67a rename to `speaches` UNIX
Raw Open in browser Change history
from collections.abc import Generator import io import logging import time from typing import Annotated, Literal, Self from fastapi import APIRouter from fastapi.responses import StreamingResponse import numpy as np from piper.voice import PiperVoice from pydantic import BaseModel, BeforeValidator, Field, ValidationError, model_validator import soundfile as sf from speaches.dependencies import PiperModelManagerDependency from speaches.hf_utils import ( PiperModel, list_piper_models, read_piper_voices_config, ) DEFAULT_MODEL = "piper" # https://platform.openai.com/docs/api-reference/audio/createSpeech#audio-createspeech-response_format DEFAULT_RESPONSE_FORMAT = "mp3" DEFAULT_VOICE = "en_US-amy-medium" # TODO: make configurable DEFAULT_VOICE_SAMPLE_RATE = 22050 # NOTE: Dependant on the voice # https://platform.openai.com/docs/api-reference/audio/createSpeech#audio-createspeech-model # https://platform.openai.com/docs/models/tts OPENAI_SUPPORTED_SPEECH_MODEL = ("tts-1", "tts-1-hd") # https://platform.openai.com/docs/api-reference/audio/createSpeech#audio-createspeech-voice # https://platform.openai.com/docs/guides/text-to-speech/voice-options OPENAI_SUPPORTED_SPEECH_VOICE_NAMES = ("alloy", "echo", "fable", "onyx", "nova", "shimmer") # https://platform.openai.com/docs/guides/text-to-speech/supported-output-formats type ResponseFormat = Literal["mp3", "flac", "wav", "pcm"] SUPPORTED_RESPONSE_FORMATS = ("mp3", "flac", "wav", "pcm") UNSUPORTED_RESPONSE_FORMATS = ("opus", "aac") MIN_SAMPLE_RATE = 8000 MAX_SAMPLE_RATE = 48000 logger = logging.getLogger(__name__) router = APIRouter(tags=["speech-to-text"]) # aip 'Write a function `resample_audio` which would take in RAW PCM 16-bit signed, little-endian audio data represented as bytes (`audio_bytes`) and resample it (either downsample or upsample) from `sample_rate` to `target_sample_rate` using numpy' # noqa: E501 def resample_audio(audio_bytes: bytes, sample_rate: int, target_sample_rate: int) -> bytes: audio_data = np.frombuffer(audio_bytes, dtype=np.int16) duration = len(audio_data) / sample_rate target_length = int(duration * target_sample_rate) resampled_data = np.interp( np.linspace(0, len(audio_data), target_length, endpoint=False), np.arange(len(audio_data)), audio_data ) return resampled_data.astype(np.int16).tobytes() def generate_audio( piper_tts: PiperVoice, text: str, *, speed: float = 1.0, sample_rate: int | None = None ) -> Generator[bytes, None, None]: if sample_rate is None: sample_rate = piper_tts.config.sample_rate start = time.perf_counter() for audio_bytes in piper_tts.synthesize_stream_raw(text, length_scale=1.0 / speed): if sample_rate != piper_tts.config.sample_rate: audio_bytes = resample_audio(audio_bytes, piper_tts.config.sample_rate, sample_rate) # noqa: PLW2901 yield audio_bytes logger.info(f"Generated audio for {len(text)} characters in {time.perf_counter() - start}s") def convert_audio_format( audio_bytes: bytes, sample_rate: int, audio_format: ResponseFormat, format: str = "RAW", # noqa: A002 channels: int = 1, subtype: str = "PCM_16", endian: str = "LITTLE", ) -> bytes: # NOTE: the default dtype is float64. Should something else be used? Would that improve performance? data, _ = sf.read( io.BytesIO(audio_bytes), samplerate=sample_rate, format=format, channels=channels, subtype=subtype, endian=endian, ) converted_audio_bytes_buffer = io.BytesIO() sf.write(converted_audio_bytes_buffer, data, samplerate=sample_rate, format=audio_format) return converted_audio_bytes_buffer.getvalue() def handle_openai_supported_model_ids(model_id: str) -> str: if model_id in OPENAI_SUPPORTED_SPEECH_MODEL: logger.warning(f"{model_id} is not a valid model name. Using '{DEFAULT_MODEL}' instead.") return DEFAULT_MODEL return model_id ModelId = Annotated[ Literal["piper"], BeforeValidator(handle_openai_supported_model_ids), Field( description=f"The ID of the model. The only supported model is '{DEFAULT_MODEL}'.", examples=[DEFAULT_MODEL], ), ] def handle_openai_supported_voices(voice: str) -> str: if voice in OPENAI_SUPPORTED_SPEECH_VOICE_NAMES: logger.warning(f"{voice} is not a valid voice name. Using '{DEFAULT_VOICE}' instead.") return DEFAULT_VOICE return voice Voice = Annotated[str, BeforeValidator(handle_openai_supported_voices)] # TODO: description and examples class CreateSpeechRequestBody(BaseModel): model: ModelId = DEFAULT_MODEL input: str = Field( ..., description="The text to generate audio for. ", examples=[ "A rainbow is an optical phenomenon caused by refraction, internal reflection and dispersion of light in water droplets resulting in a continuous spectrum of light appearing in the sky. The rainbow takes the form of a multicoloured circular arc. Rainbows caused by sunlight always appear in the section of sky directly opposite the Sun. Rainbows can be caused by many forms of airborne water. These include not only rain, but also mist, spray, and airborne dew." # noqa: E501 ], ) voice: Voice = DEFAULT_VOICE """ The last part of the voice name is the quality (x_low, low, medium, high). Each quality has a different default sample rate: - x_low: 16000 Hz - low: 16000 Hz - medium: 22050 Hz - high: 22050 Hz """ response_format: ResponseFormat = Field( DEFAULT_RESPONSE_FORMAT, description=f"The format to audio in. Supported formats are {", ".join(SUPPORTED_RESPONSE_FORMATS)}. {", ".join(UNSUPORTED_RESPONSE_FORMATS)} are not supported", # noqa: E501 examples=list(SUPPORTED_RESPONSE_FORMATS), ) # https://platform.openai.com/docs/api-reference/audio/createSpeech#audio-createspeech-voice speed: float = Field(1.0, ge=0.25, le=4.0) """The speed of the generated audio. Select a value from 0.25 to 4.0. 1.0 is the default.""" sample_rate: int | None = Field(None, ge=MIN_SAMPLE_RATE, le=MAX_SAMPLE_RATE) """Desired sample rate to convert the generated audio to. If not provided, the model's default sample rate will be used.""" # noqa: E501 # TODO: document default sample rate for each voice quality # TODO: move into `Voice` @model_validator(mode="after") def verify_voice_is_valid(self) -> Self: valid_voices = read_piper_voices_config() if self.voice not in valid_voices: raise ValidationError(f"Voice '{self.voice}' is not supported. Supported voices: {valid_voices.keys()}") return self # https://platform.openai.com/docs/api-reference/audio/createSpeech @router.post("/v1/audio/speech") def synthesize( piper_model_manager: PiperModelManagerDependency, body: CreateSpeechRequestBody, ) -> StreamingResponse: with piper_model_manager.load_model(body.voice) as piper_tts: audio_generator = generate_audio(piper_tts, body.input, speed=body.speed, sample_rate=body.sample_rate) if body.response_format != "pcm": audio_generator = ( convert_audio_format( audio_bytes, body.sample_rate or piper_tts.config.sample_rate, body.response_format ) for audio_bytes in audio_generator ) return StreamingResponse(audio_generator, media_type=f"audio/{body.response_format}") @router.get("/v1/audio/speech/voices") def list_voices() -> list[PiperModel]: return list(list_piper_models())

          
        
    
    
Copyright Yona authors & © NAVER Corp. & NAVER LABS Supported by NAVER CLOUD PLATFORM

or
Sign in with github login with Google Sign in with Google
Reset password | Sign up