
File name
Commit message
Commit date

2024-12-16

2024-12-16

import io
import argparse
import asyncio
import numpy as np
import ffmpeg
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
from whisper_online import asr_factory, add_shared_args
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Argument parsing
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default='localhost')
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--warmup-file", type=str, dest="warmup_file",
help="The path to a speech audio wav file to warm up Whisper so that the very first chunk processing is fast. It can be e.g. https://github.com/ggerganov/whisper.cpp/raw/master/samples/jfk.wav .")
add_shared_args(parser)
args = parser.parse_args()
# Initialize Whisper
asr, online = asr_factory(args)
# Load demo HTML for the root endpoint
with open("live_transcription.html", "r") as f:
html = f.read()
@app.get("/")
async def get():
return HTMLResponse(html)
# Streaming constants
SAMPLE_RATE = 16000
CHANNELS = 1
SAMPLES_PER_SEC = SAMPLE_RATE * int(args.min_chunk_size)
BYTES_PER_SAMPLE = 2 # s16le = 2 bytes per sample
BYTES_PER_SEC = SAMPLES_PER_SEC * BYTES_PER_SAMPLE
async def start_ffmpeg_decoder():
"""
Start an FFmpeg process in async streaming mode that reads WebM from stdin
and outputs raw s16le PCM on stdout. Returns the process object.
"""
process = (
ffmpeg
.input('pipe:0', format='webm')
.output('pipe:1', format='s16le', acodec='pcm_s16le', ac=CHANNELS, ar=str(SAMPLE_RATE))
.run_async(pipe_stdin=True, pipe_stdout=True, pipe_stderr=True)
)
return process
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
print("WebSocket connection opened.")
ffmpeg_process = await start_ffmpeg_decoder()
pcm_buffer = bytearray()
# Continuously read decoded PCM from ffmpeg stdout in a background task
async def ffmpeg_stdout_reader():
nonlocal pcm_buffer
loop = asyncio.get_event_loop()
while True:
try:
chunk = await loop.run_in_executor(None, ffmpeg_process.stdout.read, 4096)
if not chunk: # FFmpeg might have closed
print("FFmpeg stdout closed.")
break
pcm_buffer.extend(chunk)
# Process in 3-second batches
while len(pcm_buffer) >= BYTES_PER_SEC:
three_sec_chunk = pcm_buffer[:BYTES_PER_SEC]
del pcm_buffer[:BYTES_PER_SEC]
# Convert int16 -> float32
pcm_array = np.frombuffer(three_sec_chunk, dtype=np.int16).astype(np.float32) / 32768.0
# Send PCM data to Whisper
online.insert_audio_chunk(pcm_array)
transcription = online.process_iter()
buffer = online.to_flush(online.transcript_buffer.buffer)
# Return partial transcription results to the client
await websocket.send_json({
"transcription": transcription[2],
"buffer": buffer[2]
})
except Exception as e:
print(f"Exception in ffmpeg_stdout_reader: {e}")
break
print("Exiting ffmpeg_stdout_reader...")
stdout_reader_task = asyncio.create_task(ffmpeg_stdout_reader())
try:
while True:
# Receive incoming WebM audio chunks from the client
message = await websocket.receive_bytes()
# Pass them to ffmpeg via stdin
ffmpeg_process.stdin.write(message)
ffmpeg_process.stdin.flush()
except WebSocketDisconnect:
print("WebSocket connection closed.")
except Exception as e:
print(f"Error in websocket loop: {e}")
finally:
# Clean up ffmpeg and the reader task
try:
ffmpeg_process.stdin.close()
except:
pass
stdout_reader_task.cancel()
try:
ffmpeg_process.stdout.close()
except:
pass
ffmpeg_process.wait()
if __name__ == "__main__":
import uvicorn
uvicorn.run("whisper_fastapi_online_server:app", host=args.host, port=args.port, reload=True)