
File name
Commit message
Commit date
from microphone_stream import MicrophoneStream
from voice_activity_controller import VoiceActivityController
from whisper_online import *
import numpy as np
import librosa
import io
import soundfile
import sys
SAMPLING_RATE = 16000
model = "large-v2"
src_lan = "en" # source language
tgt_lan = "en" # target language -- same as source for ASR, "en" if translate task is used
use_vad_result = True
min_sample_length = 1 * SAMPLING_RATE
asr = FasterWhisperASR(src_lan, model) # loads and wraps Whisper model
tokenizer = create_tokenizer(tgt_lan) # sentence segmenter for the target language
online = OnlineASRProcessor(asr, tokenizer) # create processing object
microphone_stream = MicrophoneStream()
vad = VoiceActivityController(use_vad_result = use_vad_result)
complete_text = ''
final_processing_pending = False
out = []
out_len = 0
for iter in vad.detect_user_speech(microphone_stream): # processing loop:
raw_bytes= iter[0]
is_final = iter[1]
if raw_bytes:
sf = soundfile.SoundFile(io.BytesIO(raw_bytes), channels=1,endian="LITTLE",samplerate=SAMPLING_RATE, subtype="PCM_16",format="RAW")
audio, _ = librosa.load(sf,sr=SAMPLING_RATE)
out.append(audio)
out_len += len(audio)
if (is_final or out_len >= min_sample_length) and out_len>0:
a = np.concatenate(out)
online.insert_audio_chunk(a)
if out_len > min_sample_length:
o = online.process_iter()
print('-----'*10)
complete_text = complete_text + o[2]
print('PARTIAL - '+ complete_text) # do something with current partial output
print('-----'*10)
out = []
out_len = 0
if is_final:
o = online.finish()
# final_processing_pending = False
print('-----'*10)
complete_text = complete_text + o[2]
print('FINAL - '+ complete_text) # do something with current partial output
print('-----'*10)
online.init()
out = []
out_len = 0