
File name
Commit message
Commit date
from whisper_online import *
from voice_activity_controller import *
import soundfile
import io
SAMPLING_RATE = 16000
class VACOnlineASRProcessor(OnlineASRProcessor):
def __init__(self, online_chunk_size, *a, **kw):
self.online_chunk_size = online_chunk_size
self.online = OnlineASRProcessor(*a, **kw)
self.vac = VoiceActivityController(use_vad_result = False)
self.logfile = self.online.logfile
self.init()
def init(self):
self.online.init()
self.vac.reset_states()
self.current_online_chunk_buffer_size = 0
self.is_currently_final = False
def insert_audio_chunk(self, audio):
r = self.vac.detect_speech_iter(audio,audio_in_int16=False)
audio, is_final = r
print(is_final)
self.is_currently_final = is_final
self.online.insert_audio_chunk(audio)
self.current_online_chunk_buffer_size += len(audio)
def process_iter(self):
if self.is_currently_final:
return self.finish()
elif self.current_online_chunk_buffer_size > SAMPLING_RATE*self.online_chunk_size:
self.current_online_chunk_buffer_size = 0
ret = self.online.process_iter()
return ret
else:
print("no online update, only VAD", file=self.logfile)
return (None, None, "")
def finish(self):
ret = self.online.finish()
self.online.init(keep_offset=True)
self.current_online_chunk_buffer_size = 0
return ret
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('audio_path', type=str, help="Filename of 16kHz mono channel wav, on which live streaming is simulated.")
add_shared_args(parser)
parser.add_argument('--start_at', type=float, default=0.0, help='Start processing audio at this time.')
parser.add_argument('--offline', action="store_true", default=False, help='Offline mode.')
parser.add_argument('--comp_unaware', action="store_true", default=False, help='Computationally unaware simulation.')
parser.add_argument('--vac-chunk-size', type=float, default=0.04, help='VAC sample size in seconds.')
args = parser.parse_args()
# reset to store stderr to different file stream, e.g. open(os.devnull,"w")
logfile = sys.stderr
if args.offline and args.comp_unaware:
print("No or one option from --offline and --comp_unaware are available, not both. Exiting.",file=logfile)
sys.exit(1)
audio_path = args.audio_path
SAMPLING_RATE = 16000
duration = len(load_audio(audio_path))/SAMPLING_RATE
print("Audio duration is: %2.2f seconds" % duration, file=logfile)
size = args.model
language = args.lan
t = time.time()
print(f"Loading Whisper {size} model for {language}...",file=logfile,end=" ",flush=True)
if args.backend == "faster-whisper":
asr_cls = FasterWhisperASR
else:
asr_cls = WhisperTimestampedASR
asr = asr_cls(modelsize=size, lan=language, cache_dir=args.model_cache_dir, model_dir=args.model_dir)
if args.task == "translate":
asr.set_translate_task()
tgt_language = "en" # Whisper translates into English
else:
tgt_language = language # Whisper transcribes in this language
e = time.time()
print(f"done. It took {round(e-t,2)} seconds.",file=logfile)
if args.vad:
print("setting VAD filter",file=logfile)
asr.use_vad()
min_chunk = args.vac_chunk_size
if args.buffer_trimming == "sentence":
tokenizer = create_tokenizer(tgt_language)
else:
tokenizer = None
online = VACOnlineASRProcessor(args.min_chunk_size, asr,tokenizer,logfile=logfile,buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec))
# load the audio into the LRU cache before we start the timer
a = load_audio_chunk(audio_path,0,1)
# warm up the ASR, because the very first transcribe takes much more time than the other
asr.transcribe(a)
beg = args.start_at
start = time.time()-beg
def output_transcript(o, now=None):
# output format in stdout is like:
# 4186.3606 0 1720 Takhle to je
# - the first three words are:
# - emission time from beginning of processing, in milliseconds
# - beg and end timestamp of the text segment, as estimated by Whisper model. The timestamps are not accurate, but they're useful anyway
# - the next words: segment transcript
if now is None:
now = time.time()-start
if o[0] is not None:
print("%1.4f %1.0f %1.0f %s" % (now*1000, o[0]*1000,o[1]*1000,o[2]),file=logfile,flush=True)
print("%1.4f %1.0f %1.0f %s" % (now*1000, o[0]*1000,o[1]*1000,o[2]),flush=True)
else:
print(o,file=logfile,flush=True)
if args.offline: ## offline mode processing (for testing/debugging)
a = load_audio(audio_path)
online.insert_audio_chunk(a)
try:
o = online.process_iter()
except AssertionError:
print("assertion error",file=logfile)
pass
else:
output_transcript(o)
now = None
elif args.comp_unaware: # computational unaware mode
end = beg + min_chunk
while True:
a = load_audio_chunk(audio_path,beg,end)
online.insert_audio_chunk(a)
try:
o = online.process_iter()
except AssertionError:
print("assertion error",file=logfile)
pass
else:
output_transcript(o, now=end)
print(f"## last processed {end:.2f}s",file=logfile,flush=True)
if end >= duration:
break
beg = end
if end + min_chunk > duration:
end = duration
else:
end += min_chunk
now = duration
else: # online = simultaneous mode
end = 0
while True:
now = time.time() - start
if now < end+min_chunk:
time.sleep(min_chunk+end-now)
end = time.time() - start
a = load_audio_chunk(audio_path,beg,end)
beg = end
online.insert_audio_chunk(a)
try:
o = online.process_iter()
except AssertionError:
print("assertion error",file=logfile)
pass
else:
output_transcript(o)
now = time.time() - start
print(f"## last processed {end:.2f} s, now is {now:.2f}, the latency is {now-end:.2f}",file=logfile,flush=True)
if end >= duration:
break
now = None
o = online.finish()
output_transcript(o, now=now)